Pyro Primitives

param

param(name, init_value=None, **kwargs)[source]

Annotate the given site as an optimizable parameter for use with jax.experimental.optimizers. For an example of how param statements can be used in inference algorithms, refer to svi().

Parameters:
  • name (str) – name of site.
  • init_value (numpy.ndarray) – initial value specified by the user. Note that the onus of using this to initialize the optimizer is on the user / inference algorithm, since there is no global parameter store in NumPyro.
Returns:

value for the parameter. Unless wrapped inside a handler like substitute, this will simply return the initial value.

sample

sample(name, fn, obs=None, rng_key=None, sample_shape=())[source]

Returns a random sample from the stochastic function fn. This can have additional side effects when wrapped inside effect handlers like substitute.

Note

By design, sample primitive is meant to be used inside a NumPyro model. Then seed handler is used to inject a random state to fn. In those situations, rng_key keyword will take no effect.

Parameters:
  • name (str) – name of the sample site
  • fn – Python callable
  • obs (numpy.ndarray) – observed value
  • rng_key (jax.random.PRNGKey) – an optional random key for fn.
  • sample_shape – Shape of samples to be drawn.
Returns:

sample from the stochastic fn.

plate

class plate(name, size, subsample_size=None, dim=None)[source]

Construct for annotating conditionally independent variables. Within a plate context manager, sample sites will be automatically broadcasted to the size of the plate. Additionally, a scale factor might be applied by certain inference algorithms if subsample_size is specified.

Parameters:
  • name (str) – Name of the plate.
  • size (int) – Size of the plate.
  • subsample_size (int) – Optional argument denoting the size of the mini-batch. This can be used to apply a scaling factor by inference algorithms. e.g. when computing ELBO using a mini-batch.
  • dim (int) – Optional argument to specify which dimension in the tensor is used as the plate dim. If None (default), the leftmost available dim is allocated.

module

module(name, nn, input_shape=None)[source]

Declare a stax style neural network inside a model so that its parameters are registered for optimization via param() statements.

Parameters:
  • name (str) – name of the module to be registered.
  • nn (tuple) – a tuple of (init_fn, apply_fn) obtained by a stax constructor function.
  • input_shape (tuple) – shape of the input taken by the neural network.
Returns:

a apply_fn with bound parameters that takes an array as an input and returns the neural network transformed output array.